A new simple concept for ocean colour remote sensing using parallel polarisation radiance

نویسندگان

  • Xianqiang He
  • Delu Pan
  • Yan Bai
  • Difeng Wang
  • Zengzhou Hao
چکیده

Ocean colour remote sensing has supported research on subjects ranging from marine ecosystems to climate change for almost 35 years. However, as the framework for ocean colour remote sensing is based on the radiation intensity at the top-of-atmosphere (TOA), the polarisation of the radiation, which contains additional information on atmospheric and water optical properties, has largely been neglected. In this study, we propose a new simple concept to ocean colour remote sensing that uses parallel polarisation radiance (PPR) instead of the traditional radiation intensity. We use vector radiative transfer simulation and polarimetric satellite sensing data to demonstrate that using PPR has two significant advantages in that it effectively diminishes the sun glint contamination and enhances the ocean colour signal at the TOA. This concept may open new doors for ocean colour remote sensing. We suggest that the next generation of ocean colour sensors should measure PPR to enhance observational capability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 An Introduction to FY - 3 / MERSI , Ocean Colour Algorithm , Product and Application

Ocean colour is the water-leaving radiance in the visible and near-infrared just above the ocean surface owing to selective absorption and scattering by phytoplankton and its pigments such as chlorophyll, as well as dissolved organic matter and suspended particulate matter in the subsurface ocean waters. Ocean colour carries useful information concerning biogeochemical properties of the water b...

متن کامل

Chapter 3 Uncertainties in the Products of Ocean-Colour Remote Sensing

Data products retrieved from the inversion of in situ or remotely sensed oceancolour data are generally distributed or reported without estimates of their uncertainties. The accuracy of inversion products such as chlorophyll-a or IOPs is frequently evaluated by comparison with in situ measurements, but these analyses are not always sufficient to determine the level of uncertainty of an ocean-co...

متن کامل

Hue-Angle Product for Low to Medium Spatial Resolution Optical Satellite Sensors

In the European Citclops project, with a prime aim of developing new tools to involve citizens in the water quality monitoring of natural waters, colour was identified as a simple property that can be measured via a smartphone app and by dedicated low-cost instruments. In a recent paper, we demonstrated that colour, as expressed mainly by the hue angle (α), can also be derived accurately and co...

متن کامل

Electro-Optical Design of Imaging Payload for a Remote Sensing Satellite

Remote sensing using small spacecraft arising from multi-objective economic activity problems is getting more and more developed. These satellites require very accurate pointing to specific locations of interest, with high reliability and small latency. The space borne imaging systems always attempted to achieve the highest ground resolution possible with the available technology at the given t...

متن کامل

Remote Sensing of Tidal Situation by Monitoring Changes in Suspended Sediment Concentration in Surface Waters

Collecting information on suspended sediments concentration (SSC) in coastal waters and estuaries is vital for proper management of coastal environments. Traditionally, SSC used to be measured by time consuming and costly point measurements. This method allows the accurate measurement of SSC only for a point in space and time. Remote sensing from air-borne and space-borne sensors have proved to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014